There are 7 questions with total 124 points in this exam.

1. Let $A \subset \mathbb{R}^{n}$.
(a) (6 points) Define what it means to say that A has (n-dimensional) content $c(A)$ zero.

Solution: A set $Z \subset \mathbb{R}^{n}$ has n-content zero if $\forall \epsilon>0, \exists$ a finite set $\mathscr{C}=\left\{K_{j}\right\}_{j=1}^{m}$ of n-cells such that
(a) $Z \subset \cup_{j=1}^{m} K_{j}$,
(b) $\sum_{j=1}^{m} c\left(K_{j}\right)<\epsilon$.
(b) (6 points) Define what it means to say that A has (n-dimensional) content.

Solution: A set $A \subset \mathbb{R}^{n}$ is said to have content (or it is said to be (Jordan) measurable) if it is bounded and its boundary ∂A has content zero.
2. (a) (6 points) Let $A=(0,1) \times(0,1)$. Show that A has (2 -dimensional) content and find its content.

Solution: (1) For each $(x, y) \in A$, since $\|(x, y)\| \leq \sqrt{2}, A$ is bounded.
(2) For any $4>\epsilon>0$, let $K_{1}=\left[0, \frac{\epsilon}{4}\right] \times[0,1], K_{2}=\left[1-\frac{\epsilon}{4}, 1\right] \times[0,1], K_{3}=[0,1] \times\left[0, \frac{\epsilon}{4}\right]$, and $K_{4}=[0,1] \times\left[1-\frac{\epsilon}{4}, 1\right]$.
Since $\partial A=(\{0,1\} \times[0,1]) \cup([0,1] \times\{0,1\}) \subset \cup_{i=1}^{4} K_{i}$, and $\sum_{i=1}^{4} c\left(K_{i}\right)=\epsilon, \partial A$ has content zero.
By (1) and (2), we conclude that A has content and $c(A)=c(\bar{A})=1$.
(b) (6 points) Let $Z=\{(x, y)| | x|+|y|=1\}$. Show that Z has (2-dimensional) content zero.

Solution: For each $\epsilon>0$, choose $n \in \mathbb{N}$ such that $\frac{1}{n}<\frac{\epsilon}{4}$. For each $i=1, \ldots, n$, let $K_{i}=\left[\frac{i-1}{n}, \frac{i}{n}\right] \times\left[1-\frac{i}{n}, 1-\frac{i-1}{n}\right]$. Then $Z \cap\{(x, y) \mid x \geq 0, y \geq 0\} \subset \cup_{i=1}^{n} K_{i}$ and $\sum_{i=1}^{n} c\left(K_{i}\right)=\frac{1}{n}<\frac{\epsilon}{4}$. Similarly, we can cover the remaining part of Z by using cells of the same size. Hence, Z has content zero.
3. Let K be a closed cell in \mathbb{R}^{n}, f be a bounded function defined on K to \mathbb{R}, and $P=\left\{K_{j}\right\}_{j=1}^{m}$ be a partition of K.
(a) (6 points) Define the upper sum $U_{P}(f, K)$, the lower sum $L_{P}(f, K)$, and a Riemann sum $S_{P}(f, K)$ of f corresponding to the partition P over K.

Solution: Since f is bounded on $K, \sup _{K_{j}} f$ and $\inf _{K_{j}} f$ exist for each $j=1, \ldots, m$.
The upper sum of f corresponding to the partition P over K is defined by $U_{P}(f, K)=$ $\sum_{j=1}^{m}\left(\sup _{K_{j}} f\right) c\left(K_{j}\right)$;
the lower sum of f corresponding to the partition P over K is defined by $L_{P}(f, K)=$ $\sum_{j=1}^{m}\left(\inf _{K_{j}} f\right) c\left(K_{j}\right) ;$ and
$S_{P}(f, K)=\sum_{j=1}^{m} f\left(x_{j}\right) c\left(K_{j}\right)$ for any $x_{j} \in K_{j}$ is called a Riemann sum of f corresponding to the partition P over K.
(b) (4 points) Let $Q=\left\{I_{i}\right\}_{i=1}^{l}$ be another partition of K. Define what it means to say that Q is a refinement of P.

Solution: We say that Q is a refinement of P if for each $I_{i} \in Q$, there exists a $K_{j} \in P$ such that $I_{i} \subseteq K_{j}$.
(c) (8 points) Let P, Q be partitions of K such that $P \subset Q$ i.e. Q is finer than P. Show that

$$
L_{P}(f, K) \leq L_{Q}(f, K) \leq S_{Q}(f, K) \leq U_{Q}(f, K) \leq U_{P}(f, K)
$$

Solution: For each $I_{i} \in Q$, since $P \subset Q$, there exists a $K_{j} \in P$ such that $I_{i} \subseteq K_{j}$.
Since $\inf _{K_{j}} f \leq \inf _{I_{i}} f \leq f\left(x_{i}\right) \leq \sup _{I_{i}} f \leq \sup _{K_{j}} f$,
and $c\left(K_{j}\right)=c\left(K_{j} \cap \bigcup_{i=1}^{l} I_{i}\right)=\sum_{I_{i} \in Q \text { and } I_{i} \subseteq K_{j}} c\left(I_{i}\right)$,
we have $L_{P}(f, K) \leq L_{Q}(f, K) \leq S_{Q}(f, K) \leq U_{Q}(f, K) \leq U_{P}(f, K)$.
4. (a) (6 points) Let $f(x)= \begin{cases}1 & \text { if } x \in[-1,0), \\ 2 & \text { if } x \in[0,1] .\end{cases}$

Show that f is integrable on $[-1,1]$ and find $\int_{-1}^{1} f(x) d x$.
Solution: For each $\epsilon>0$, let $P=\left\{-1=x_{0}<x_{1}<\cdots<x_{n}=1\right\}$ be a partition of $[-1,1]$ such that $\|P\|=\max _{1 \leq i \leq n}\left|x_{i}-x_{i-1}\right|<\epsilon$. Since $\left|U_{P}(f,[-1,1])-L_{P}(f,[-1,1])\right|<2 \epsilon, f$ is integrable on $[-1,1]$ by Riemann Criterion.
$\int_{-1}^{1} f(x) d x=\lim _{\|P\| \rightarrow 0} U_{P}(f,[-1,1])=1+2=3$.
(b) (6 points) For $a<b$, let $f(x)= \begin{cases}a & \text { if } x \in \mathbb{Q} \cap[0,1], \\ b & \text { if } x \in[0,1] \backslash \mathbb{Q} .\end{cases}$

Show that f is not integrable on $[0,1]$.
Solution: Let $\epsilon_{0}=\frac{b-a}{2}>0$ and P be any partition of $[0,1]$, since $\mid U_{P}(f,[0,1])-$ $L_{P}(f,[0,1]) \mid=b-a>\epsilon_{0}, f$ is not integrable on $[0,1]$.
(c) (6 points) Let A be a bounded subset of \mathbb{R}^{n}, and f be a bounded function defined on A to \mathbb{R}. Define what it means to say that f is integrable on A.

Solution: Let K be a closed cell in \mathbb{R}^{n} containing A and f_{K} be an extension of f on K defined by $f_{K}(x)= \begin{cases}f(x) & \text { if } x \in A, \\ 0 & \text { if } x \in K \backslash A .\end{cases}$
We say that f is integrable on A if f_{K} is integrable on K, and define $\int_{A} f=\int_{K} f_{K}$.
5. (a) (6 points) Let $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $(x, y)=\psi(r, \theta)=(r \cos \theta, r \sin \theta)$. Find $d \psi(r, \theta)$ and $\operatorname{det} d \psi(r, \theta)$.

Solution: $\operatorname{det} d \psi=\left|\begin{array}{rr}\cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta\end{array}\right|=r$.
(b) (6 points) Let $\psi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $(x, y, z)=\psi(\rho, \phi, \theta)$
$=(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)$. Find $d \psi(\rho, \phi, \theta)$ and $\operatorname{det} d \psi(\rho, \phi, \theta)$.
Solution: $\operatorname{det} d \psi=\left|\begin{array}{ccc}\sin \phi \cos \theta & \rho \cos \phi \cos \theta & -\rho \sin \phi \sin \theta \\ \sin \phi \sin \theta & \rho \cos \phi \sin \theta & \rho \sin \phi \cos \theta \\ \cos \phi & -\rho \sin \phi & 0\end{array}\right|$
$=\cos \phi\left|\begin{array}{rr}\rho \cos \phi \cos \theta & -\rho \sin \phi \sin \theta \\ \rho \cos \phi \sin \theta & \rho \sin \phi \cos \theta\end{array}\right|+\rho \sin \phi\left|\begin{array}{rr}\sin \phi \cos \theta & -\rho \sin \phi \sin \theta \\ \sin \phi \sin \theta & \rho \sin \phi \cos \theta\end{array}\right|$
$=\rho^{2} \sin \phi \cos ^{2} \phi\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+\rho^{2} \sin ^{3} \phi\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\rho^{2} \sin \phi$.
(c) (6 points) Show that $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$.

Solution: $\left(\int_{0}^{\infty} e^{-x^{2}} d x\right)^{2}=\int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}-y^{2}} d x d y=\int_{0}^{\pi / 2} \int_{0}^{\infty} r e^{-r^{2}} d r d \theta=\frac{\pi}{4}$.
(d) (6 points) Let $B=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=\rho^{2}\right\}$ be the ball of radius ρ with the center at origin.
Show that the volume of B is $\iiint_{B} d x d y d z=\frac{4 \pi \rho^{3}}{3}$.
Solution: $\iiint_{B} d x d y d z=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\rho} r^{2} \sin \phi d r d \phi d \theta$
$=\left(\left.\theta\right|_{0} ^{2 \pi}\right)\left(-\left.\cos \phi\right|_{0} ^{\pi}\right)\left(\left.\frac{r^{3}}{3}\right|_{0} ^{\rho}\right)=\frac{4 \pi \rho^{3}}{3}$.
6. (a) (6 points) State the Bounded Convergence Theorem with which one can conclude that $\lim _{n \rightarrow \infty} \int_{K} f_{n}=\int_{K} \lim _{n \rightarrow \infty} f_{n}$.
Solution: Let $\left\{f_{n}\right\}$ be a sequence of integrable functions on a closed cell $K \subset \mathbb{R}^{p}$. Suppose that there exists $B>0$ such that $\left\|f_{n}(x)\right\| \leq B$ for each $n \in \mathbb{N}$ and for all $x \in K$. If the function $f(x)=\lim f_{n}(x), x \in K$, exists and is integrable, then $\int_{K} f=\lim \int_{K} f_{n}$.
(b) (6 points) For $0<a<2$, show that $f_{n}(x)=e^{-n x^{2}}$ converges uniformly on $[a, 2]$, and show that $\lim _{n \rightarrow \infty} \int_{a}^{2} f_{n}(x) d x=0$.
Solution: For each $x \in[a, 2]$, since $\lim _{n \rightarrow \infty} f_{n}(x)=0$, and $\lim _{n \rightarrow \infty} \sup _{x \in[a, 2]}\left|f_{n}(x)-0\right| \leq \lim _{n \rightarrow \infty} e^{-n a^{2}}=$ $0, f_{n}$ converges uniformly on $[a, 2]$. Since each f_{n} is continuous on $[a, 2], f_{n}$ is integrable there. Thus, $\left\{f_{n}\right\}$ is a sequence of integrable function that converges uniformly on $[a, 2]$ and we have $\lim _{n \rightarrow \infty} \int_{a}^{2} f_{n}(x) d x=\int_{a}^{2} \lim _{n \rightarrow \infty} f_{n}(x) d x=0$.
(c) (6 points) Show that $f_{n}(x)=e^{-n x^{2}}$ does not converge uniformly on $[0,2]$, and use a suitable convergence theorem to show that $\lim _{n \rightarrow \infty} \int_{0}^{2} f_{n}(x) d x=0$.
Solution: The limiting function f is given by $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\left\{\begin{array}{ll}1 & \text { if } x=0 \\ 0 & \text { if } x \in(0,2]\end{array}\right.$.
Since each f_{n} is continuous on $[0,2]$ while f is not continuous at $x=0$, the convergence of
f_{n} to f is not uniform on [0, 2].
Note that $\left|f_{n}(x)\right|=e^{-n x^{2}} \leq 1$ for each $n \in \mathbb{N}$ and for all $x \in[0,2]$, and that f is integrable on $[0,2]$, we can use the Bounded Convergence Theorem to conclude that $\lim _{n \rightarrow \infty} \int_{a}^{2} f_{n}(x) d x=\int_{a}^{2} \lim _{n \rightarrow \infty} f_{n}(x) d x=\int_{0}^{2} f(x) d x=0$.
7. (a) (8 points) Use the Dominated Convergence Theorem to show that the integral $F(t, u)=$ $\int_{0}^{\infty} e^{-t x} \sin u x d x$ converges uniformly for all $t \geq \gamma>0$ and for all $u \in \mathbb{R}$ to $\frac{u}{u^{2}+t^{2}}$.
Solution: Since $\left|e^{-t x} \sin u x\right| \leq e^{-t x}$ for all $x \geq 0, t \geq \gamma>0, u \in \mathbb{R}$ and $\int_{0}^{\infty} e^{-t x} d x$ exists for all $t \geq \gamma>0$, we can use the Dominated Convergence Theorem to conclude that the integral $F(t, u)=\int_{0}^{\infty} e^{-t x} \sin u x d x$ converges uniformly for all $t \geq \gamma>0$ and for all $u \in \mathbb{R}$. By using the integration by parts, we have $F(t, u)=\int_{0}^{\infty} e^{-t x} \sin u x d x=\left.\frac{e^{-t x}}{-t} \sin u x\right|_{0} ^{\infty}-$ $\frac{u}{-t} \int_{0}^{\infty} e^{-t x} \cos u x d x=\left.\frac{u e^{-t x}}{-t^{2}} \cos u x\right|_{0} ^{\infty}-\frac{-u^{2}}{-t^{2}} \int_{0}^{\infty} e^{-t x} \sin u x d x=\frac{u}{t^{2}}-\frac{u^{2}}{t^{2}} F(t, u)=\frac{u}{u^{2}+t^{2}}$.
(b) (6 points) Use the Dirichlet's test to show that the integral $G(t, u)=\int_{0}^{\infty} e^{-t x} \frac{\sin u x}{x} d x$ converges uniformly for all $t \geq \gamma>0$ and for all $u \in \mathbb{R}$.

Solution: Since $\left|\int_{0}^{c} \sin u x d x\right| \leq 2$ for all $c \geq 0, u \in \mathbb{R}$, and the function $\frac{e^{-t x}}{x}$ is monotone decreasing for $x>0$, and $\lim _{x \rightarrow \infty} \frac{e^{-t x}}{x}=0$, we can use the Dirichlet's test to conclude that $G(t, u)=\int_{0}^{\infty} e^{-t x} \frac{\sin u x}{x} d x$ converges uniformly for all $t \geq \gamma>0$ and for all $u \in \mathbb{R}$.
(c) (8 points) Let $G(t)=\int_{0}^{\infty} e^{-x^{2}-t^{2} / x^{2}} d x$ for $t>0$. Show that $G^{\prime}(t)=-2 G(t)$ and $G(t)=$ $\frac{\sqrt{\pi}}{2} e^{-2 t}$.
Solution: $G^{\prime}(t)=\int_{0}^{\infty} \frac{-2 t}{x^{2}} e^{-x^{2}-t^{2} / x^{2}} d x$
By setting $z=\frac{t}{x}$, we have $d z=-\frac{t}{x^{2}} d x$ and
$G^{\prime}(t)=2 \int_{\infty}^{0} e^{-t^{2} / z^{2}-z^{2}} d z=-2 G(t)$
By separating the variables in the differential equation and integrating from 0 to t, we get $\log \frac{G(t)}{G(0)}=-2 t \Rightarrow G(t)=G(0) e^{-2 t}=\left(\int_{0}^{\infty} e^{-x^{2}} d x\right) e^{-2 t}=\frac{\sqrt{\pi}}{2} e^{-2 t}$.

